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Wemodel the effects of weak fluctuations on the probability densities and normalized powers of vortexmodels for
the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbulence
channel. We find that probability density of signal vortex models is a function of deviation from the center of
the photon beam, and the farther away from the beam center it is, the smaller the probability density is. For frac-
tional topological charge, the average probability densities of signal/crosstalk vortex modes oscillate along the
beam radius except the half-integer order. As the beam waist of the photon source grows, the average probability
density of signal and crosstalk vortex modes grow together. Moreover, the peak of the average probability density
of crosstalk vortex modes shifts outward from the beam center as the beamwaist gets larger. The results also show
that the smaller index of non-Kolmogorov turbulence and the smaller generalized refractive-index structure
parameter may lead to the higher average probability densities of signal vortex modes and lower average prob-
ability densities of crosstalk vortex modes. Lower-coherence radius or beamwaist can give rise to less reduction of
the normalized powers of the signal vortex modes, which is opposite to the normalized powers of crosstalk vortex
modes. © 2016 Chinese Laser Press

OCIS codes: (010.1330) Atmospheric turbulence; (270.5290) Photon statistics; (270.5565) Quantum commu-
nications.
http://dx.doi.org/10.1364/PRJ.4.000030

1. INTRODUCTION
In recent years, the study of the stable vortex beams whose
vortex model per photon can take an arbitrary value within a
continuous range, either integer or noninteger, in units of ℏ is
a newly burgeoning field [1–5]. The propagation property of
fractional vortice-imprinted Bessel beams in free space has
been given attention both theoretically and experimentally
[6–8]. It has been verified that vortices with fractional strength
do not propagate unaffected in free space. However, neglect-
ing their evolving intensity and vortex structure, a vortex in-
tegrated over the whole beam cross section is invariant under
free-space propagation [7]. The fractional Bessel beams (non-
diffracting vortex beams) are of special interest due to their
properties of divergence-free propagation and self-repair, and
have generated widespread interest in the last decade for
applications in optical communications [9–13]. Götte pro-
posed a quantum mechanical description of the beams with
fractional topological charges [13], and a high-order Bessel
nonvortex beam of fractional type (HOBNVBs-F) was intro-
duced by Mitri [10–12]. Next, we developed the model of
average probability densities and the normalized powers of
the signal/crosstalk orbital angular momentum modes for the
fractional-order Bessel–Gauss (FoBG) photon beams in the
turbulent atmosphere of strong irradiance fluctuations [14].
On the other hand, we know that Kolmogorov’s power spec-
tral density model is widely used and accepted to describe
wave propagation through atmospheric turbulence, but the
experimental data in the last several decades shows that
atmospheric turbulence generally possesses a structure differ-

ent from the Kolmogorov model [8]. The Kolmogorov turbu-
lence is actually an exception to non-Kolmogorov turbulence.
When describing the effect of turbulence on fractional Bessel–
Gauss photon beams in different conditions, it is better using
non-Kolmogorov turbulence than Kolmogorov turbulence,
which is especially embodied in its exponent value. As we
know, there is almost no discussion with respect to the effects
of non-Kolmogorov turbulence on the probability densities
and the normalized powers of the vortex modes for FoBG pho-
ton beams in the weak and paraxial atmosphere channel.

In this paper, we analyze the influence of non-Kolmogorov
turbulence on the vortex mode probability densities and the
normalized powers for FoBG beams along the direction of the
beam radius. Our aim is to exploit this changing process to
present the effects of the weak non-Kolmogorov turbulence
on Bessel–Gauss photon beams. We anticipate that this work
will be particularly useful when applied to practical applica-
tion for optical wireless communication. In Section 2, the
models of the probability density for vortex modes and the
normalized power of vortex per photon per unit length of a
transverse slice of the beam for FoBG beams in non-
Kolmogorov turbulence are established. The effects of frac-
tional topological charges, turbulence strength (in weak fluc-
tuation region), propagation distance, the non-Kolmogorov
turbulence parameter, and wavelength on the probability
densities of signal and crosstalk vortex modes of FoBG
photon beams along the direction of the receiving plane
are researched in Section 3. Conclusions are presented in
Section 4.
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2. MODE PROBABILITY DENSITY
In the weak fluctuation region [15] and in the half-space z>0,
the normalized complex amplitude of FoBG beams in a cylin-
drical coordinate system �r;φ; z� can be expressed as [16]

FoBG�r;φ; z� � FoBGfree�r;φ; z� exp�ψ�r;φ; z��; (1)

where r � jrj, r � �x; y� is the two-dimensional position vec-
tor in the source plane; z is propagation distance; ψ�r;φ; z� is
the complex phase of waves propagating through turbulence;
l0 describes the topological charge of the helical structure
of the wave front around a wave front singularity; and
FoBGfree�r;φ; z� is the normalized complex amplitude of
the FoBG beam at the z plane in the free turbulence channel.
In the paraxial region, the normalized complex amplitude
FoBGfree�r;φ; z� of a nondiffracting Bessel–Gauss photon
beam with fractional topological charge has the form [7,15]

FoBGfree�r;φ; z� �
1

μ�z�
��i�γ sin��πγ�

π

× exp
�
−i

k2rz
2kμ�z� −

r2

μ�z�w2
0

�

×
X∞
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krr
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exp�il0φ�; (2)

where μ�z� � 1� iz∕zR, zR � kw2
0∕2, k � 2π∕λ is the wave-

number;w0 is the beam waist at the z � 0 plane; λ is the wave-
length; zR is the Rayleigh range; J jl0j is the Bessel function of
integer orders; kr � ξk is the transverse wavenumber; and γ is
the fractional index of any real number [7]. To keep it simple,

we use Cγ to denote the term ��i�γ sin��πγ�
π · ijl0 j

�γ−l0
.

As we know, from the view of quantum theory, the atmos-
pheric turbulence fluctuations disturb the complex amplitude
of the propagating photon beam, which is no longer guaran-
teed to be in the original eigenstate of topological charge. The
resulting photon beam now can be regarded as a superposi-
tion of the waves with new topological charge. Similar to the
discussion of [7,17] for beams with integer topological charge,
the FoBG is expanded as an integral with orthogonal basis
exp�ilφ� which carries topological charge l; then the complex
amplitude FoBG�r;φ; z� of the FoBG beam can be written as

FoBG�r;φ; z� �
X∞

jl0j�−∞
βl�r; z� exp�ilφ�; (3)

where the term βl�r; z� is the mode amplitude of the vortex
mode with topological charge l at the position �r; z� given by

βl�r; z� �
1
2π

Z
2π

0
FoBG�r;φ; z� exp�−ilφ�dφ: (4)

As we all know, the mode probability density is equal to
jβl�r; z�j2. In turbulent media, the mode probability density
is associated with the ensemble average over turbulent
medium, i.e., hjβl�r; z�j2iat, where h·i denotes the average over
the ensemble of the turbulent atmosphere. By Eqs. (1) and (4)
and proceeding with the ensemble average of atmospheric
turbulence for βl�r; z�β	l �r; z�, where 	 denotes complex con-
jugate, the ensemble averaging mode probability density

Dl�r; z� of vortex models l of an FoBG beam in paraxial chan-
nel �kr → ∞� is given by

Dl�r; z� � hjβl�r; z�j2iat

�
�
1
2π

�
2
Z

2π

0

Z
2π

0
FoBGfree�r;φ; z�

× FoBG	
free�r0;φ0; z�

× hexp�ψ�r;φ; z� � ψ	�r0;φ0; z��iat
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In the far-field region [15], hexp�ψ�r;φ; z� � ψ	�r0;φ0; z��iat
is given by

hexp�ψ�r;φ;z��ψ	�r0;φ0;z��iat

�exp
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0
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where Φn�·� denotes the spatial power spectrum of atmos-
pheric turbulence and J0�·� is the Bessel function of the first
kind with 0 order. For non-Kolmogorov turbulence, the spatial
power spectrum is commonly given by the expression [18]

Φn�κ� � A�α�C2
n exp�−κ2∕κ2m��κ2 � κ20�−α∕2; 3 < α < 4;

where α is the parameter of non-Kolmogorov turbulence,
Γ�α� denotes the Gamma function, and A�α� � Γ�α − 1�
cos�απ∕2�∕4π2; κ0 � 2π∕Louter and κm � f2πΓ��5 − α�∕2�
A�α�∕3g1∕�α−5�∕Linner, where Louter and Linner are the outer and
inner scale of turbulence, respectively. C2

n is the generalized
refractive-index structure parameter with units m3−α; for sim-
plicity’s sake, we set C2

n for FoGB beams as a constant to
discuss the influence of α on the beam. To simplify the numeri-
cal discussion in Section 3, we set Louter � ∞ without consid-
ering the effect of outer scale, and Linner � 1 mm [15].

In the paraxial approximation of the wave phase structure
function, Eq. (6) can be expressed in the following form [15]:

hexp�ψ�r;φ; z� � ψ	�r0;φ0; z��iat ≅ exp
�
−

jr − r0j2
ρ20
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�
−
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�
; (7)

where ρ0 is the spatial coherence radius of a spherical wave
propagating in the weak non-Kolmogorov turbulence [18,19]
and given by

ρ0 �
�
2Γ��3 − α�∕2��α − 1�
π1∕2k2Γ�1 − α∕2�C2

nz

�
1∕�α−2�

; 3 < α < 4;

based on the integral expression [20]

Z
2π

0
exp�−inφ1�ηcos�φ1−φ2��dφ1�2π exp�−inφ2�In�η�; (8)

where In�η� is the Bessel function of the second kind with n
order. Making use of Eqs. (2), (5), and (7) as well as the Bessel
function orthogonal completeness
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�P∞
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;
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we have the probability density of the vortex modes for FoBG
beams in paraxial turbulence channel
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sin2�πγ�w2
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where w�z� � w0

																						
1� z2R∕z2

q
is the Gaussian spot size and

Δl � l − l0 denotes the value of crosstalk. For Δl � 0,
Dl0 �r; z� is the probability density of the signal vortex mode
l0 for FoBG beams, and for Δl ≠ 0, Dl≠l0�r; z� is the probability
density of the crosstalk vortex mode l � l0 � Δl, which repre-
sents the probability density of the part of the energy launched
into the signal vortex mode redistributed into other vortex
modes by atmospheric turbulence [21]. The term C2

γ indicates
the vortex model distribution for different fractional values γ
when l0 changes (see Fig. 1).

The normalized power of vortex per photon per unit
length of a transverse slice of the beam is calculated with
the expression [7]

Lz�l� � ℏ
X∞
l�−∞

lBPlP∞
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; (10)

where B is the is the beam width of the channel,
P∞

l�−∞ BPl is
the beam power, and BPl is the power of each vortex mode
with topological charge l with and given by [7]
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Similarly, for l � l0, Lz�l0� expresses the normalized power
of the signal vortex mode for FoBG photon beams and,
for l ≠ l0, Lz�l� is the normalized power of the crosstalk vortex
modes.

3. NUMERICAL DISCUSSION
As we all know, the longer wavelength λ is beneficial to the
propagation of photon beams for less attenuation and lower
crosstalk. Besides, it is entirely reasonable that the average
probability density of signal vortex modes and signal normal-
ized powers decrease, and the average crosstalk probability of
vortex modes and crosstalk normalized powers increase
when the propagation distance z increases. Then, we do not
discuss the influences owed to the wavelength λ and the
propagation distance z. To simplify, in the following figures,
we now define mode probability as average probability den-
sity (Dl0�r; z�) of the signal vortex modes, and crosstalk prob-
ability as the average probability density (Dl≠l0�r; z�) of the
crosstalk vortex modes.

First, we study the effects of the fractional order of
topological charge l, the fractional parameter γ, the non-
Kolmogorov turbulence coherence radius ρ0 (in weak fluc-
tuation region), and beam waist w0 on the average probability
densities Dl�r; z� along the direction of r for FoBG beams. The
simulation results are shown in Figs. 2–5. In Fig. 2, we evalu-
ate performance of average probability densitiesDl�r; z� along
the direction of the beam radius r for FoBG beam with
w0 � 0.1m, ξ � 0.01, and Δl � 0, 1, 2, 3, and 4. The parame-
ters for the simulation of atmospheric turbulence channel are
as follows: z � 1km, α � 11∕3, and C2

n � 10−15m3−α. From
Fig. 2, we can see that crosstalk probability Dl≠l0�r; z� de-
creases with the increase of topological charge deviation Δl
and it drops rapidly after the slow growth with the increase
of r. When r is large enough (in Fig. 2, r > 0.2m), mode prob-
ability Dl0�r; z� and crosstalk probability Dl≠l0�r; z� tend to
be the same. The results show that we can obtain the higher
signal crosstalk probability ratio only in the circle region of
radius r < 0.2m, and the center of the circle region is the
beam center. So in the next context, we adopt the circle region
of radius r < 0.2m.

In Fig. 3, the average probability density Dl�r; z� is
plotted as a function of the beam radius r for topological
charge deviation Δl � 0 and 1, with w0 � 0.10m, ξ � 0.01,
z � 1km, α � 11∕3, and C2

n � 10−15m3−α. Figures 3(a) and
3(b) are for γ � 3.1, 3.3, 3.5, 3.7, and 3.9, respectively. As is
seen from Fig. 3, the Dl�r; z� for γ � 3.1, 3.3, 3.7, and 3.9
are the vibration curves which are around the curve of
γ � 3.5. Figure 3(a) indicates that mode probability decreases
with the increase of r, while the crosstalk probability decays
after the increase in the area close to the circle area in
Fig. 3(b). Figures 3(a) and 3(b) show that the curve is without

Fig. 1. Distribution of vortex models with fractional topological
charge γ when l0 changes. Every subplot has a peak at the nearest
integer to γ. When γ � 3.5 (half-integer), this results in two peaks
of equal height at the two neighboring integers. The spread in the dis-
tribution is determined by the fractional value γ.

Fig. 2. Average mode probability Dl�r; z� of FoBG beam along the
direction of the beam radius r for different values of Δl.
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vibration when the value of γ is half-integer. And the more
close the value of γ is to half-integer, the closer its curve tends
to the curve with γ � 3.5. In order to facilitate the beam prop-
erties, we set γ � 3.5.

Figures 4 and 5 present how the various parameters
of atmospheric turbulence affect the average probability
densities Dl�r; z�. Figure 4(a) is a plot of the average mode
probability Dl0�r; z� versus the varied beam radius r for the
different non-Kolmogorov turbulence parameters α. The
curve associated with α � 3.67 corresponds to Kolmogorov
turbulence. The curves in Fig. 4(a) are consistent with [18]
in that the smaller α comes with the larger Dl0�r; z� in the re-
ceiving plane for any given propagation distance; the reason is
that the spatial coherence radius ρ0 tends to infinity when α
approaches 3. That is, the interruption of the turbulence
on the photon beams is very weak, and a high Dl0�r; z� is
acquired. However, when α is close to 4, the wave aberration
caused by turbulence is a pure wavefront tilt, which shifts the

beam off-axis and results in the beam center being away from
the receiving plane [18]. Thus, Dl0�r; z� decreases as α ap-
proaches 4. The relationship between the average crosstalk
probabilityDl≠l0 �r; z� and the α of non-Kolmogorov turbulence
is revealed by Fig. 4(b). When the propagation distance z is
given, the Dl≠l0 �r; z� of FoBG photon beams increases rapidly
when α changes from 3.07 to 3.97 near the beam center re-
gions (about r < 0.04m). When detection position is far away
from the beam center in the receiving plane, all the curves in
Fig. 4(b) tend to be same.

Figure 5 is constructed to assess how the non-Kolmogorov
turbulence coherence radius C2

n affects the average probabil-
ity densities Dl�r; z� with varied beam radius r. The curves in
Fig. 5(a) show that increasing r makes mode probability
Dl0�r; z� decrease sooner, while increasing C2

n doesn’t make
the signal probability density change apparent. It is important
to note that crosstalk probability Dl≠l0�r; z� increases with the
lower C2

n near the beam center (about r < 0.04m), and the
main energy still remains at the transmit signal channel.
However, crosstalk probability decays and the energy of
the adjacent channel decreases immediately as the detection
position moves away from the beam center. For instance, all
the curves slowly tend to overlap; namely, the effects of differ-
ent C2

n value on crosstalk probability densities become less
distinct when r > 0.15m.

Figure 6 investigates the average probability Dl�r; z� as a
function of beam radius r for a FoBG beam with topological
charge deviation Δl � 0 and 1, γ � 3.5, and ξ � 0.01 for
w0 � 0.02m, 0.05 m, 0.08 m, and 0.10 m, respectively. The
parameters of the atmospheric turbulence channel for the
simulation are as follows: z � 1km, α � 11∕3, and C2

n �
10−15m3−α. Figure 6(a) shows that increasing w0 makes mode
probability decay slowly. The results of Fig. 6(b) reveal that
higherw0 corresponds to the higher crosstalk probability den-
sities and makes the curve peak away from the beam center.

For the sake of simplicity, we will discuss the impact of ρ0
on the mode probability densities and normalized powers in-
stead of the basic parameters α and C2

n. The normalized
powers Lz�l� of signal and crosstalk vortex modes for the
parameters α � 11∕3, C2

n � 10−15m3−α, w0 � 0.10m, and
Δl � 0, 1, 2, 3, and 4 are shown in Fig. 7. Here we see that
the crosstalk-normalized powers Lz�l ≠ l0� between vortex
modes decrease with the increasing of Δl.

Finally, the effects of ρ0 and w0 on the normalized powers
Lz�l� of signal or crosstalk vortex modes per photon per unit
length of a transverse slice for FoBG beams are shown in
Fig. 8. To do that, we fix the parameters γ � 3.5 and

Fig. 3. Average probability densities Dl�r; z� of vortex modes for
fractional FoBG beam along the direction of the beam radius r with
different values of γ. (a) Δl � 0, mode probability; (b) Δl � 1, cross-
talk probability.

Fig. 4. Average probability densities Dl�r; z� of vortex modes for
fractional FoBG beam along the direction of the beam radius r with
different values of α. (a) Δl � 0, mode probability; (b) Δl � 1, cross-
talk probability.

Fig. 5. Average probability densities Dl�r; z� of vortex modes for
fractional FoBG beam along the direction of the beam radius r with
different values of C2

n. (a) Δl � 0, mode probability; (b) Δl � 1, cross-
talk probability.

Fig. 6. Average probability densities Dl�r; z� of vortex modes for
fractional FoBG beam along the direction of the beam radius r with
different values of beam waist w0. (a) Δl � 0, mode probability;
(b) Δl � 1, crosstalk probability.
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ξ � 0.01. Lower ρ0 can give rise to increase of the normalized
power of the signal vortex mode Lz�l0� and decrease of the
normalized powers of the crosstalk vortex modes Lz�l ≠ l0�.
Obviously, greater w0 can enhance the normalized power
of the signal vortex mode and reduce the normalized powers
of crosstalk vortex modes.

4. CONCLUSION
In conclusion, the model of probability densities and the nor-
malized powers of signal or crosstalk vortex modes for FoBG
photon beams in weak fluctuation turbulent atmosphere have
been developed. Our results show that average mode proba-
bility Dl0�r; z� and average crosstalk probability Dl≠l0�r; z� are
the same when beam radius r is large enough. For fractional
order Bessel–Gauss beams, when r varies, Dl�r; z� oscillates
except γ is half-integer. For the half-integer beams, the in-
creases of α and C2

n result in the degradation of Dl0�r; z�,
and average crosstalk probability Dl≠l0�r; z� drops rapidly
after the slow growth as r increases, namely average crosstalk
probability curves have peaks. Near the central region of
the beam, enlarging Δl or minimizing α, C2

n, and w0 can make
the Dl≠l0 �r; z� decrease. Furthermore, lower ρ0 and w0 can
give rise to less reduction of the turbulence effect on the nor-
malized power of signal vortex mode. Compared with signal
normalized powers, the opposite changes in tendency of
crosstalk-normalized powers are observed.
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Fig. 8. Normalized powers Lz�l� of fractional vortex modes for FoBG
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Fig. 7. Normalized powers Lz�l� of fractional vortex modes for FoBG
beam along the direction of the transmission distance z with different
values of Δl.
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